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1. Introduction

But most by Numbers judge a Poet’s Song,
And smooth or rough, with them, is right or wrong;

These Equal Syllables alone require,

Tho’ oft the Ear the open Vowels tire,

While Expletives their feeble Aid do join,
And ten low Words oft creep in one dull Line,

—Alexander Pope, An Essay on Criticism (1709)

Numerical patterns have fascinated humans for millennia: numbers that
are powers of other numbers, squares that are sums of squares, numbers
that form intriguing lists. This is the story of one of the earliest studies
of rhythm, an investigation that led ancient Indian scholars to discover
the mathematical patterns that Westerners know as the Fibonacci num-
bers, Pascal’s triangle, and the binary counting system. Although our story
initially concerns rhythm in poetry, the ancient Indians” ability and fasci-
nation with exploring rhythmic patterns also had a profound influence on
their music.

2. Maeter as Binary Code

In English, a poetic rhythm, called a meter, is a pattern of stressed and
unstressed syllables. English poets use about a dozen different meters.
Much poetry, including Shakespeare’s plays, is written in iambic pentame-
ter—five pairs of alternating unstressed and stressed syllables to a line.
Alexander Pope’s 700+-line iambic pentameter poem An Essay on Criti-
cism (1709) is a good example. In the excerpt that begins this chapter, he
ridicules critics who judge poetry “by numbers”—that is, solely on how
well a poet follows strict metrical rules.

While English poets use relatively few meters, there are hundreds of
different meters in Sanskrit, the classical language of India. Syllables in
Sanskrit poetry are classified by duration (short or long) rather than stress.
Any Sanskrit meter can be written as a binary code—a pattern of any length
formed by two symbols. For example, there are eight binary codes of
length 3 that are formed from the letters L and S:

LLL SLL LSL SSL LLS SLS LSS and SSS

These correspond to the eight three-syllable meters, using S for a short
syllable and L for a long syllable.
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Pingala, who probably lived in the last few centuries B.C., is thought to
be the first Indian scholar to study meter mathematically. As is typical in
ancient Indian literature, Pingala’s writings took the form of short, cryptic
verses, or siitras, which served as memory aids for a larger set of concepts
passed on orally. We are dependent on medieval commentators for trans-
mission and interpretation of Pingala’s writings.

Here are two of the questions that Pingala answered:

e What is a reliable way to list all the meters with a given number of syl-
lables?

e How many meters have a given number of syllables?

2.1 Problem 1: Listing Meters.

There are a number of ways to solve this problem. Pingala’s solution
would result in the one-syllable meters listed as

L S
the two-syllable meters being listed as
LL SL LS SS
and the three-syllable meters like this:
LLL SLL [LSL SSL LLS SLS LSS SSS
Here is how the four-syllable patterns would be listed:

LLLL, SLLL, LSLL, SSLL, LLSL, SLSL, LSSL, SSSL,
LLLS, SLLS, LSLS, SSLS, LLSS, SLSS, LSSS, SSSS.

Several patterns are observable in these lists. The first column alternates
L and S, the second alternates pairs of L's and pairs of S’s, the third alter-
nates four copies of the letters, and so on. There is symmetry in the lists,
in the sense that the first pattern is equivalent to the last with the letters
exchanged, and this is true for each pair of patterns that are at the same
distance from the beginning and end.

In addition, there is a relationship between successive lists: for exam-
ple, the list of four-syllable meters is formed from the list of three-syllable
meters by first adding L’s to the end of the list, then adding S’s. This last
observation is useful for describing an algorithm that will produce all me-
ters of length n in the order that Pingala did.

Exercise

1. Write the list of five-syllable meters in the order that you think Pingala
would have listed them. Describe the procedure that you followed to
get the answer.
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Theorem 1 (Listing n-syllable meters). The list of one-syllable patterns
is {L, S}. Suppose that a list of n-syllable patterns is formed from a non-
repeating list of all (n — 1)-syllable patterns by adding L’s to the end of
each (n — 1)-syllable pattern, followed by the list resulting from adding
S’s to the end of each (n — 1)-syllable pattern. Then each n-syllable pattern
will occur exactly once in the new list.

Proof: Tt is clear that each of the one-syllable meters (n = 1) is listed once.
Suppose that the algorithm results in each of the (n — 1)-syllable patterns
being listed exactly once. Use the algorithm to form a list of n-syllable
patterns. Choose any n-syllable pattern. We want to show that any chosen
pattern occurs exactly once in the new list.

e If the pattern ends in an L, then the algorithm shows that it appears
exactly once in the first half of the list, its first (n — 1) syllables appear
exactly once in the list of (n — 1)-syllable patterns.

e If it ends in an S, it appears exactly once in the second half of the list for
the same reason. O

The proof essentially says that if the one-syllable patterns are correct,
then the two-syllable patterns are correct, then the three-syllable patterns
are correct, and so on, until your chosen length is reached—sort of like a
row of dominoes falling down. This type of reasoning is called proof by
induction. Although it may seem intuitively reasonable to argue this way,
in fact, one of the axioms for the positive integers, the Axiom of Induction,
legitimates such reasoning.

2.2 Problem 2: Counting Meters

How many meters have n syllables? Counting the patterns on the lists
above, you see the numbers 2, 4, 8, and 16, which equal 2!, 22, 2*, and 2*.
You might conjecture that there are 32 (or 2°) four-syllable meters, and, in
general, there are 2" n-syllable meters. This is correct. It follows so closely
from the theorem that mathematicians would call it a corollary, which is a
theorem that may be proven from another theorem without much effort.

Corollary 1 (Counting n-syllable meters). The number of n-syllable me-
ters is 2".

Exercises
2. How long is the list on which LLSSLSL appears?

3. Assuming that the theorem has been proven true, explain why the corol-
lary is true. You don’t need to write a formal proof, but use complete
sentences.
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2.3 The Binary Number System

Since there’s nothing special about the letters L and S, the previous the-
orem and its corollary generalize to any set of binary codes. For example,
there are 2° patterns of length 5 that are formed from the letters a and b.
In some ways, Pingala anticipated the development of the binary number
system. The binary number system is a base-two positional number sys-
tem (our number system is a base-ten positional system). It has two digits,
0 and 1, and its place values are powers of two—therefore, every number
is also a binary code. The decimal numbers 1, 2, 8, and 11 have binary rep-
resentation 1, 10, 1000, and 1011, respectively. The binary number system
was not fully described until Gottfried Leibniz did so in the 17th century.

Exercises

4. Suppose that you flip a coin three times and write down the pattern of
heads and tails, using H and T. The order of flips makes a difference—
that is, HHT is different from HTH. How many patterns of three coin
flips are there? List them and use your list to compute the likelihood
of getting tails exactly once if you flip three times. Describe how you
would list and count the patterns for any number of coin flips.

5. Here are the binary numbers from 8 (1000 in binary) to 15 (1111 in bi-
nary):
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

How is this sequence related to the list of three-syllable meters? Con-
jecture how many binary numbers have five digits and list them. (Ex-
tra Credit: Learn more about the binary number system and determine
whether your answer is correct.)

3. Hemachandra-Fibonacci Numbers

The 12th-century writer Acarya Hemachandra also studied poetic me-
ter. A mora is the durational unit of Sanskrit poetry; short syllables count
as one mora and long syllables two morae, which we’ll call “beats.” In-
stead of counting meters with a fixed number of syllables, Hemachandra
counted meters having a fixed duration. For example, the three meters of
three beats are SL, LS, and SSS. More meters are listed in Figure 1.

Exercises

6. Before you go on, count the number of meters for duration one through
five and make a conjecture about the number of meters with six beats
and the formula for finding the number of meters with any arbitrary
number of beats. Try Worksheet A: Rhythm Patterns of Fixed Duration
(p- 17) for a more-thorough exploration of the problem.

4
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1 beat | 2 beats | 3 beats 4 beats 5 beats
S L SS|SL LS| LL SLS| SLL LLS
SSS | SSL LSS | LSL  SSLS
SSSS | SSSL SLSS
LSSS
SSSSS

Figure 1. Meters listed by duration.

Hemachandra noticed that each number in the sequence is the sum of
the two previous numbers. Since the first two numbers are 1 and 2, the
numbers form the sequence 1, 2, 3, 5, 8, 13, .... In other words, he dis-
covered the “Fibonacci” numbers—about 50 years before Fibonacci did.
Indian poets and drummers know these numbers as Hemachandra num-
bers. Fibonacci may have learned the sequence from the Indians. Fibonacci
was educated in North Africa and was familiar with Eastern mathematics.
His book Liber Abaci (1202), in which the sequence appears, introduced the
Indian positional number system—the system that we use today—to the
West. However, his description of the number sequence as counting the
sizes of successive generations of rabbits is not found in India.

Theorem 2. The sequence of numbers of meters with n beats, beginning
withn = 1, is the Hemachandra sequence, 1,2, 3,5, 8,13, .... Whenn > 2,
each number in the sequence is the sum of the two previous numbers.

Proof: Let H [n| represent the nth number in the sequence, the total number
of patterns of duration n. Since there is one pattern (S) of duration 1, we
have H[1] = 1; and since there are two patterns (SS and L) of duration 2,
we have H[2] = 2. When n > 2, partition the collection of n-beat patterns
into two sets: patterns of duration (n — 2) followed by a long syllable L,
and patterns of duration (n — 1) followed by a short syllable S. The number
of patterns in the first set is H [n — 2], since they are formed by adding L to
the patterns with (n — 2) beats; and the number of patterns in the second
set is H[n — 1], since they are formed by adding S to the patterns with
(n — 1) beats. The partition shows that H[n| = H[n — 1] + H[n — 2] when
n > 2. Therefore, the list of numbers forms the Hemachandra sequence.[]

If the notation H|[n|, H[n — 1], etc. is unfamiliar, it’s worth taking time
to understand it. Because H [n] refers to the nth number in the sequence,
H[n — 1] is the (n — 1)st number—that is, the number preceding H [n]. The
equation H[n] = H[n — 1] + H[n — 2] means “the nth number is the sum
of the number that is one place before it and the number that is two places
before it.” For example, if n = 5, then

H[5] = H[5— 1] + H[5 — 2 = H[4] + H[3)].
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In words, the fifth number is the sum of the fourth number and the third
number. Note that H[5 — 1] # H[5] — 1, because H[5 — 1] = H[4] = 5,
while H[5] -1 =8—-1=T7.

Exercise

7. The procedure for writing the patterns with duration n as a combination
of patterns of durations (n — 1) and (n — 2), as explained in the proof,
suggests how to use the information in Figure 1 to list the 13 patterns
with six beats. Write them out.

3.1 Recursion

Recursion is a process in which one structure is embedded inside another
similar structure, rather like nesting Russian dolls, or the Droste cocoa
box. Recursion is the lifeblood of computer programming and is crucial
in mathematics as well. An algorithm is a recursive if you start with some
information (called a base case) and arrive at all subsequent information by
repeatedly applying the same rule, called a recursive rule.

In the example of the Hemachandra numbers, there are two meters of
one syllable each, L and S. This is the base case. If you know all the me-
ters that have n — 1 or n — 2 syllables, you can list the meters that have
n syllables by first adding an L to the beginning of the meters with n — 2
syllables, then adding an S to the beginning of the meters with n — 1 syl-
lables. This is the recursive rule that is expressed by the formula H[n] =
Hn—1]+ Hn — 2.

3.2 The Padovan Sequence

The poetic meters that Pingala and Hemachandra studied have an ana-
logue in music. Music from India, the Middle East, and the Balkans is
often written in additive meter—that is, a rhythmic organization founded in
grouping beats rather than subdividing larger units of time called measures,
which is the typical structure of Western European music.

Figure 2 shows a few examples. The Bulgarian dance called Daichovo
horo has a nine-beat measure, grouped 2+2+2+3. This means that the first,
third, fifth, and seventh beats normally receive an accent; they are also
the beats on which the dancers step. The jazz pianist and composer Dave
Brubeck (1920-2012) used the same rhythm in his “Blue Rondo a la Turk”
(1959). A Gankino horo has an eleven-beat measure, with beats grouped
2+2+3+2+2.

Many additive meters are binary codes formed of two- and three-beat
groupings, rather than one- and two-beat groupings. In this situation, we
need something like Hemachandra’s sequence for counting meters of a
given duration, as explored in the following exercise.

6
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Rhythms of one- and two-beat notes

)
cumbia bell part (Columbia) (0 N N I B
mambo bell part (Cuba) C T T 77T

)

)

merengue bell part (Dominican Rep.

bintin bell pattern (Ghana
also bembe shango (Afro-Cuban

Rhythms of two- and three-beat notes
lesnoto (Bulgaria) B T ]
bomba (Puerto Rico) N |
guajira (Spain) B [ T ]
12-beat clave (Cuba) [ T

Figure 2. Musical rhythms from various cultures.

Exercise

8. This problem is explored in Worksheet A: Rhythm Patterns of Fixed
Duration (p. 17). The Hemachandra numbers count rhythms formed
from one- and two-beat notes. What sequence counts rhythms con-
sisting of two- and three-beat notes? Find the first few numbers in
the sequence—the base case—and a recursive rule that generates the
sequence. Explain why your rule is correct. This number sequence
is called the Padovan sequence and has a rich history. The sequence is
named after architect Richard Padovan (1935-), despite Padovan’s spe-
cific attribution of the sequence to the Dutch architect (and later monk)
Hans van der Laan (1904-1991), who investigated proportions in archi-
tecture.

The On-Line Encyclopedia of Integer Sequences [Sloane 2020] is a won-
derful research tool for investigating sequences and their history.

4. The Expanding Mountain of Jewels

Pingala is credited with the discovery of “Pascal’s” triangle in India,
which he called the meruprastara, or “the expanding mountain of jewels,”
referring to the mythical Mount Meru made of gold and precious stones.
The nth row in this triangle counts the number of unordered combinations
of n syllables considered all different (rather than just long or short): taking
all n syllables together, taking all combinations of (n — 1) syllables, taking
all combinations of (n — 2) syllables, and so on.

Here is how to compute the third row in the meruprastara. We have:

1 way to choose three syllables from “prastara” (that is, pras + ta + ra),

3 ways to choose two syllables (pras + ta, pras + ra, ta + ra),

3 ways to choose one syllable (pras, ta, ra), and

1 way to choose no syllables.
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Therefore, the third row is 1 3 3 1.

When each list counting combinations of r syllables drawn from sets of
n syllables is written in a row, and the rows are stacked, the numbers form
a triangular array that extends forever:

1 4 6 4 1
Pingala recognized that each interior number is the sum of the two num-
bers above it. This array is known in the West as Pascal’s triangle—though,
of course, it wasn’t yet named for Pascal, who was born in France in 1623.
This triangle was long recognized all over the world previously. Figure 3
shows prior images from three cultures.
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Figure 3. The meruprastara from North Africa (c. 1150) to China (1303) to Germany (1527).

Exercise

9. Kedara Bhatta (14th century) discovered the meruprastara in a different
context: He found the number of meters of n syllables having r short
syllables. This is the problem that is solved in Worksheet A. The fact
that the two problems produce the same triangle is, of course, no coinci-
dence. Find an exact correspondence between the number of combina-
tions of r objects drawn from a set of n different objects and the number
of meters of n syllables having r short syllables.

4.1 Recursion and the Meruprastara

The first row of the meruprastara contains the numbers 1, 1. This is
the base case. If you know any row in the meruprastara, each number in
the following row equals the number directly above it plus the number

8
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diagonally above and to the left (if there is no number in these positions,
add zero). This is the recursive rule.

The 12th-century writer Bhaskara gives another recursive algorithm for
finding the numbers in the meruprastara in his work Lilavati. To find
the nth row in the meruprastara, start by writing the numbers counting

up (1,2,...,n), and then above them write the numbers counting down
(n,n—1,...,2,1), as we show for n = 5:

54321

12345

The first number for the row of the meruprastara is 1 (this is true for
every n). Obtain the other numbers in the row by successively multiplying
and dividing by the numbers that you have written:

5) 4 3 2

1
1 o, D 5 0; 10 3 0; 10 1 5, D 5
This tells us that the fifth row is
15101051

The numbers in row n are built up recursively, one from the next, starting
from 1 (the base case).

Exercise

10. Find the sixth row of the meruprastara using Bhaskara’s method. Check
your work using the addition algorithm, starting with the fifth row.

5. Naming Meters and
de Bruijn Sequences

5.1 Remembering Meters

Since there are hundreds of Sanskrit meters, remembering the pattern
for any particular meter requires some effort. Pingala’s indexing procedure
helps somewhat; for example, it identifies the pattern LLLSLS as “number
41 in the catalog of six-syllable meters.” However, Pingala’s best and most
well-known solution to the problem of remembering meters involves the
following mapping of groups of three syllables to letters:

bh LSS
n  SSS

m LLL
y SLL

r LSL |t LLS
s SSL |j SLS

To encode the meter LLLSLS, begin by breaking it into groups of threes
(LLL-SLS). These groups correspond to the letters m and j. The letters mj

9
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can be embedded in a word—say, “mojo”—that is more memorable that
“number 41.” Musicians too use this method for remembering rhythm pat-
terns.

Either in Pingala’s time or later, the nonsense word

yamatarajabhanasalagam
came to be used as a way to remember the mapping of triplets of syllables

to letters. The word defines a pattern of long and short syllables (in the
English transliteration of Sanskrit, a is a short vowel and 7 is a long vowel):

ya ma ta ra ja bha na sa la gam
s L L L S L S S S L

The pattern SLLLSLSSSL has the curious property that each of the eight
sequences of three syllables occurs exactly once. For example, the first
three syllables form the pattern SLL, the second three syllables form LLL,
and so on. These patterns are named using Pingala’s table, so that ya rep-
resents SLL. The number of syllables in a meter does not have to be a mul-
tiple of three, the last two syllables, and /la and gam are used to fill out the
last pattern. It is not known whether Pingala knew this mnemonic for the
triplets, or if it was discovered by poets and drummers who came after
him.

5.2 de Bruijn Sequences

The mathematician Sherman Stein (1926— ) recognized that the pattern
SLLLSLSSSL is close to being a de Bruijn sequence. A de Bruijn sequence is a
binary code where, if the pattern were wrapped on a circle, every “word”
of n letters would appear exactly once. The pattern SLLLSLSS—the pat-
tern above minus the last L—is a binary de Bruijn sequence for three-letter
words. Figure 4 depicts de Bruijn sequences for three- and four-letter
words arranged on circles.

S s LL
S L L L
S L
S L L S
. L S

S

Lo S50 s

Figure 4. De Bruijn sequences for binary codes of three and four letters, arranged on circles.

10
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Exercise

11. Although LLLSLSSS is also a de Bruijn sequence, it is not fundamentally
different from SLLLSLSS, since each sequence produces the three-letter
words in the same order, though starting at a different point in the cycle.
Using this notion of equivalence, there are only two possible de Bruijn
sequences for three-letter words that use the alphabet L, S. How can we
find the other one?

6. Patterns in Music and Architecture

Indian scholars had a great enthusiasm for solving mathematical prob-
lems related to poetry. However, the situation of pattern in Indian music
tells a more remarkable story. There, the list of patterns has transcended
its role as a “dictionary” of available patterns and has become itself an in-
teresting and valuable musical structure. In music, prastdra—meaning sys-
tematic permutation of rhythmic elements—is commonly recognized as a
principal part of the process of rhythmic variation. Indian musicians typ-
ically use prastara towards the end of a piece, since progression through
all the permutations of a rhythmic pattern is a process that has a definite
ending—that is, when all the possibilities have been exhausted. Lewis
Rowell’s description of prastara in early Indian music is also applicable
today:

Once again we can draw an important formal conclusion from the
popularity of prastara: endings are to be signaled well in advance by
the onset of some systematic musical process, a process of playful
exploitation that can be followed along a course of progressively nar-
rowed and focused expectations and that leads inexorably to a pre-
dictable conclusion. ... But prastara has symbolic overtones that tran-
scend its local role as a simple tactic of closure: the device mimics the
series of transformations through which all substance must eventu-
ally pass. Rowell [1992, 251]

Figure 5 demonstrates the use of permutation in a simple composition
for tabla (Indian drums). Each variation on the theme is a permutation of
groups of 4, 6, 8, and 10 beats:

I IL IIT. Iv. V. VL VII.
68666 664664 646646 10610(6 4)61066 610610 66686

Variations II and IIT state two of the three permutations of {6, 6,4}, with
4+6+6 missing. Variations IV, V, and VI exhaust the permutations of the 10-
and 6-beat phrases (note that variation V begins with the last four beats of
the 10-beat phrase and combines with the last 6 beats of variation VI to
form the 10-beat phrase). Finally, variation VII, a mirror image of I, signals
that the permutation process has come to a close.

11
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Theme Dhi ne Ta ge Dhi ne Ta ge
ta ke ta ge Dhi ne Ta ke
ta ge Dhi ne Ta ge te te
ghi de na ge Tin na Ta ke

Variation I. (ta ge Dhi ne Ta ke) (ta ge

6+84+6+6+6 Dhi ne Ta ke ta ke) (ta ge
Dhi ne Ta ke) (ta ge Dhi ne
Ta ke) (ta ge Tin ne Ta ke)

Variation II. | (ta ge Dhi ne Ta, ke) (ta ge

6+6+4+6+6+4 Dhi ne Ta ge) (Dhi ne ta ke) :|

Variation III. | (ta ge Dhi ne Ta ge) (Dhi ne

6+44+6+6+4+6 Ta ke) (ta ge Dhi ne ta ke) :|

Variation IV. [: (ta ge Dhi ne Ta ke ta ke

10+6+1046 ta ke) (ta ge Dhi ne Ta ke) :|

Variation V. |: ta ke ta ke) (ta ge Dhi ne

4+6+10+6-+6 Ta ke) (ta ge Dhi ne Ta ke :|

Variation VI. [: (ta ge Dhi ne Ta ke) (ta ge

6+10+6+4+10 Dhi ne Ta ke ta ke ta ke) :|

Variation VII. (ta ge Dhi ne Ta ke) (ta ge

6+6+6-+8+6 Dhi ne Ta ke) (ta ge Dhi ne
Ta ke) (ta ge Dhi ne Ta ke
ta ke) (ta ge Dhi ne Ta ke)

Figure 5. Theme and variations for tabla, as taught by Lenny Seidman. Syllables such as “Dhi”
and “ne” indicate particular ways of hitting the drums. Each syllable occupies the same amount
of time. The symbols |: and : | indicate repeats, and parentheses enclose phrases.

As Rowell [1992] points out, we can also understand prastara as mani-
festing a fascination with recursive generation and transformation that ap-
pears in Indian art, architecture, and religion from ancient times. The me-

dieval Sekhari (“multi-spired”) temples of western and central India gave
form to the view that the cosmos was recursively generated. The eleventh-
century Kandariya Mahadeva temple (Figure 6) is a celebrated example of
this style; it is composed of miniature shrines (aedicules) emanating from
a central shrine. Concerning the structure of such temples, Adam Hardy
writes:

As soon as the dynamic relationships between the aedicules are con-
sidered, the vision of a theological hierarchy can be seen as a dy-
namic process of manifestation: the emerging, expanding, prolifer-
ating, fragmenting, dissolving patterns are so closely analogous to
the concept, perennial in India, of a world of multiplicity recurrently
manifesting from unity and dissolving back into unity, that the idea
can be said to be embodied in the forms. Hardy [2002, 91-92]

Figure 7 shows how the meruprastara is made of copies of itself. It is
no wonder that ancient and medieval Indian mathematicians developed
an outstanding facility with recursion.

12
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A

‘/’r}w‘i{,«
Aup”

De tempel van Mahadeva fe Kajraha,

Figure 6. Recursion in Indian architecture: the 1lth-century Kandariya Mahadeva temple
[Thérond 1876, 340].

1 1
1 1+1 1
1 2+1 1+2 1
1 3+1 3+3 1+3 1
1 4+1 6+4 4+6 1+4 1

Figure 7. The meruprastara is made of copies of itself.
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7. Solutions to the Exercises

1. There are several algorithms that may be used. One is to write all the
4-syllable meters, following each with an L, then write the 4-syllable
meters again, following each with an S.

LLLLL SLLLL LSLLL SSLLL LLSLL SLSLL LSSLL SSSLL
LLLSL SLLSL LSLSL SSLSL LLSSL SLSSL LSSSL  SSSSL
LLLLS SLLLS LSLLS SSLLS LLSLS SLSLS LSSLS SSSLS
LLLSS SLLSS LSLSS SSLSS LLSSS SLSSS LSSSS — SSSSS

2. Since LLSSLSL has seven syllables, the list has 27 = 128 meters.

3. Pingala’s algorithm demonstrates that each list is twice the size of the
previous one (formally, if there are k meters of (n — 1) syllables, there
are 2k meters of n syllables. Since there are 2 one-syllable patterns, the
numbers of meters of each length follows the pattern 2, 4, 8, 16, and so
on.

4. Since patterns of H and T are binary, there are 2° = 8 patterns, and they
are HHH, THH, HTH, TTH, HHT, THT, HTT, TTT. Each of these pat-
terns is equally likely, and three of them have one T and two H’s, so the
likelihood of getting one T'is 3/8 or 37.5%. In general, use the algorithms
from the study of meters, substituting H for L and T for S.

5. Start with 1, then use the list of three-syllable patterns, replacing 0 with
L, 1 with S, and writing the patterns backwards. There are 24 =16 four-
digit binary numbers. You write them by following this same procedure
with the list of three-syllable meters. Proving that this answer is correct
involves understanding how place-value number systems work in bases
other than 10.

6. If your conjecture was something like “there are 13 meters with 6 beats,
and you get any number in the sequence by adding the two previous,”
you would be correct.

7. The procedure is to add an L to all the four-beat patterns, then add an S
to all the five-beat patterns, which are listed in Figure 1. The answer is:

LLL SSLL SLSL LSSL SSSSL
SLLS [LSLS SSSLS LLSS LLSLS SLSSS LSSSS SSSSSS

8. Here are the first ten entries of the Padovan sequence:

duration |1 2 3 4 5 6 7 8 9 10
patterns (O 1 1 1 2 2 3 4 &5 7

If we let P[n] be the number of n-beat rhythms, then a recursive rule is
P[n] = P[n — 2] + P[n — 3]
14
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when n > 3. The proof of this statement is similar to the proof of The-

orem 2 (the Hemachandra numbers). In this case, partition the rhythms

of duration n into rhythms of duration (n — 2) followed by a two-beat

note and rhythms of duration (n — 3) followed by a three-beat note.
Incidentally, a student noticed that

Pln] = P[n — 1] + P[n — 5]

holds for several values of n > 5 and conjectured that all Padovan num-
bers follow this rule. Is this correct? Hint: Use the first rule to rewrite
P[n —1].

The Padovan sequence has some beautiful properties—for example,
it is related to a spiral of equilateral triangles in the way that the Hema-
chandra-Fibonacci sequence is related to a spiral of squares (see Fig-
ure 9); and it is closely connected to the Perrin sequence, which uses the
same recursive relationship as the Padovan sequence but with different
starting values. See Stewart [2004, 85-94] for more examples.

13

il 3

Figure 9. A spiral of squares from the Hemachandra-Fibonacci sequence, and a spiral of triangles
from the Padovan sequence.

9.

10.

Any way of choosing objects from a collection of n different objects can
be represented by a binary code of length n in this way: Assign numbers
from 1 to n to the objects, and write I (in) if an object is selected and O
(out) if it is not. For example, suppose that you choose {2, 5, 7} from
the collection {1, 2, ..., 8}. That choice corresponds to the binary code
OIOOIOIO. Each choice of r objects corresponds to a pattern of n letters
with r I’s. Substituting S for I and L for O produces an n-syllable meter
with r short syllables.

654321
123456

The first number in the row is 1 (this is true for every n). Obtain the
other numbers in the row by successively multiplying and dividing by
the numbers that you have written:

6 5 4 3 2

—_ = N . — = 1 N 1 . — = 2 N 2 . — = ]_ N 1 . — = : .

| 6; 6 5 5; 15 3 0; 20 1 5; 15 = 6; 6
This tells us that the sixthrowis1 6 15 20 15 6 1.

15
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11. Consider the eight three-letter words. A de Bruijn sequence can be
thought of as an ordering of these words: The first word is the first three
letters in the sequence; the second word is the second through fourth
letters, and so on. You probably have noticed that there are some rules
about which words can follow each other. For example, SSL can be fol-
lowed by either SLS or SLL. A powerful representation called a directed
graph is useful in organizing these possibilities. The vertices of the graph
represent states (in this case, three-letter words). An arrow between two
states indicates that the first state can be followed by the second. The
graph is shown in Figure 10. Any path that visits each vertex exactly
once defines a de Bruijn sequence. The yamatarajabhanasalagam sequence
comes from following the path shown in red and also to the right of the
directed graph.

~LLL<
SLL LLS

LSL~~

|
SLS\

SSL LSS
NN

Figure 10. Directed graph showing which three-letter words can follow each other.

16
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8. Worksheets

8.1 Worksheet A: Rhythm Patterns of Fixed Duration

Musical patterns are sometimes classified by their number of beats, called
their duration. Many patterns use one-beat notes and two-beat notes, of-
ten called quarter notes (J) and half notes ({). We can represent them by “1”
and “2.”

duration(1121)=1+1+2+1=5

If we know how many beats we want to fill (that is, the total duration),
how many ways are there to do it, using only one-beat and two-beat notes?
We can figure out the answer by creating a list:

Duration | Patterns Number of patterns
1 1 1
2 11, 2 2
3
4
5
6

1. Complete the table.
2. How many patterns have duration 7? Duration 8? Duration 9?
3. Explain how you find the next number in the list of numbers of patterns.

4. What is the Western name for this sequence of numbers?

Relationship to poetry. Syllables in Sanskrit poetry (and in many other
languages) are either short or long. The duration of a long syllable is ex-
actly twice that of a short syllable. This means that we can measure the
total duration of a line of poetry, using “S” for a short note and “L” for
a long note. For example, the duration of SSLS is 5. The Indian scholar
Hemachandra (c. 1100 A.D.) investigated the following question: How
many poetic meters are there of any given duration? Use what you have
discovered in the exercise above to answer his question.

17
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8.2 Worksheet B: Musical Rhythms with 2- and 3-Beat Notes

In this worksheet, you will derive the sequence counting meters of a
given duration formed from notes of length 2 and 3.

Duration | Patterns Number of patterns

1 (none) 0
2 2 1
3 3 1
4 22 1
5 23, 32 2
6 33, 222 2
7 223, 232, 322 3
8

9

1. Complete the table.

2. Look for a pattern in the right-hand column. How many rhythms have
duration 10? Duration 11?

3. Explain how you find the next number in the sequence.

4. Suppose that one-, two-, and three-beat notes are allowed. How many
rhythms have a given duration?

5. Many rhythms in Western music are formed of whole notes, half notes,
and quarter notes. How many rhythms have duration equal to n whole
notes?

6. Suppose that notes of duration one through n are allowed. How many
rhythms have total duration n? The answer is surprisingly familiar. Can
you explain it in a different way?

18
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8.3 Worksheet C: The Expanding Mountain of Jewels

In each box below, enter the number of meters that fit the description.
The number in the right-hand column should equal the sum of the num-
bers in that row. This pattern was first noticed by Pingala when solving
a slightly different problem. He called this pattern the meruprastara, or
“Expanding Mountain of Jewels.”

Number of short syllables
0 1 2 3 4 ! 6 7

[\
W~

w
09

Total number of syllables
S

16
D 32
6 64
7 128

1. Describe an algorithm that tells you how the find the nth row in the
table, if you know the previous row.

2. What is the name for this array in Western mathematics?
3. What are other things that the numbers in this array count?

4. How is this array related to the Hemachandra numbers?

19
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8.4 Worksheet D: Patterns in the Meruprastara

There are some other cool recursive patterns in the meruprastara. In the
tigure below, shade the odd numbers and leave the even numbers white.

In fact, you can predict which numbers will be odd and which numbers
will be even, just by knowing how odd and even numbers add:

odd + odd =
odd + even =
even + even =

So you don’t need to calculate the numbers to shade in the hexagons!
Make a patterned meruprastara using hexagonal graph paper with 1/4”
spacing, which you can print at
https://www.printablepaper.net/category/hexagon_graph
Turn the paper sideways. Start by coloring the hexagons that would
contain 1’s, then color the others using the addition rules for odd and even
numbers.

Research Sierpinski’s triangle. How is this picture related? What is a
fractal?

20
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9. Quizzes

9.1 Quiz1

Suppose that poetic meters can be made of syllables of length S (1 beat),
L (2 beats), and E (3 beats). Let T'[n] be the number of meters of total
duration n beats.

1. Find T'[1], T'[2], and T'[3] by listing the patterns.
2.If, foralln > 3, T[n| = T[n — 1] + T[n — 2] + T'[n — 3], then
(a) Fillin the blanks: T[4 =T[ |+T[ [+ T[ ]

(b) Use the rule and your answers to the previous question to find 77[4],
T'[5], and T'[6]. Check your work by finding the patterns that are
counted by T'[4].

9.2 Quiz?2

1. The fifth row in Pascal’s Triangle is 1 510 10 5 1.
(a) What is the sixth row?
(b) What does the 10 in the fifth row count, as related to Sanskrit poetry?
(c) How many binary codes formed of 0’s and 1’s have one 0 and four
1’s?

2. How many binary codes have seven letters?

21
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10. Solutions to Quizzes

10.1 Solutions to Quiz 1

1. T'[1] = 1 because the only meter is S.

T'[2] = 2 because the meters are SS and L.

T'[3] = 4 because the meters are SSS, SL, LS, and E.

(@) T[] =T[4 — 1]+ T[4 — 2] + T[4 — 3] = T[3] + T[2] + T[1] =
1+ 2+ 4 = 7. The seven patterns counted by 7'[4] are
SE, SSL, LL, SSSS, SLS, LSS, and ES.

) T[4 = T3]+ T[2) + T[] =14+2+4="T.
T =T[4+ T3]+ T[2] =7+4+2=13.
T[6] = T[5] + T[4] + T[3] = 13+ 7+ 4 = 24.

10.2 Solutions to Quiz 2

1. (a) The sixthrowis161520156 1.

(b) The 10 in the fifth row counts the number of patterns that have five
letters, where three are S and two are L (equivalently, two are S and
three are L).

(c) There are 5.
2. There are 27 = 128 codes with 7 letters.
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11. Sample Exam Questions

. Suppose that you flip a coin four times and write the outcome as a se-
quence of heads and tails, like HTHH. How many different sequences
of four flips are possible? List them.

. For each sequence of heads and tails in the previous exercise, count the
number of T’s and H’s. For example, HTHH has 3 H’s and 1 T. Of the
patterns in the previous exercise, how many have 4 T's? 3 T’s? 2 T’s?
1 T? no T’s? Which row of the Pascal triangle corresponds with your
answers?

. Find the number of binary codes of length 10 made from 0 and 1. Of
those, how many start with a 0?2 How many start with a 1? Explain.

. Find the number of ways 1-beat notes (1’s) and 2-beat notes (2’s) form a
pattern of duration 9 beats. Of those patterns, how many start with a 1?
How many start with a 2? Explain how you know.

. Consider the collection of poetic meters with seven syllables, which may
be long or short. How many total meters are there? How many of these
meters have

a) no short syllables?

b) one short syllable?

¢) two short syllables?
d) three short syllables?
e) four short syllables?
f) five short syllables?
g) six short syllables?

h) seven short syllables?

Hint: This question is extremely tedious if you try to write down all the
meters and count them. The best way to answer it is to use the relation-
ship between poetic meters and the meruprastara (Pascal’s triangle).

. Suppose that you flip a coin seven times and write down the sequence
of heads H and tails T. There is an exact correspondence between se-
quences of heads and tails and poetic meters: Just replace H with L and
T with S. How many possible patterns are there? Use your answers
to the previous question to determine the percentage of the patterns,
rounding to two decimal places, that have

a) no tails.
b) one tail.
¢) two tails.
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d) three tails.
e) four tails.
f) five tails.
g) six tails.

h) seven tails.

Assuming that your coin is fair, each of the patterns of heads and tails is
equally likely. The percentages are the probabilities of each number of
tails when you flip the coin seven times.

7. How many meters have the same duration as SSSSSS (including SSSSSS)?
How have the same duration as LLLLLL? Your answers should be num-
bers in the Hemachandra sequence.

8. Suppose that a drummer wants to take a solo that is eight beats long
and made up of 1-beat notes, 2-beat notes, and 4-beat notes. How many
patterns are possible? Hint: Don’t try to list the patterns, because there
are a lot. Rather, find base cases and a recursive rule, write the sequence
of number of patterns, and find the eighth number in that sequence. If
you're a musician, the question is, “How many ways can you fill two
measures in 4/4 time with quarter notes, half notes, and whole notes?”

9. Add the numbers between the diagonal lines in Pascal’s triangle. For
example, the first few sums are 1, 1, 1+1=2, 1+2=3, and 1+3+1=5. What's
the pattern? See Figure 12.

Figure 12.

10. Suppose that a sequence of numbers S[1], S[2],S[3],... is defined re-
cursively by S[n] = S[n — 1] + S[n — 3].
a) If the first four numbers in the sequence are 1, 1, 2, 3, what is the fifth
number?

b) Fill in the blanks: S[100] = S| |+ S[ |

24
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Suppose that poetic meters are made of short syllables S worth 1 beat,
medium syllables M worth 2 beats, and long syllables L worth 3 beats.
Write all the meters that have total duration equal to 4 beats. For extra
credit, write a recursive rule for this type of pattern.

Find the sixth row of the meruprastara, starting with the fifth row, which
is15101051.

Suppose that poetic meters are made of medium syllables M worth 2
beats and long syllables L worth 3 beats. Write all the meters that have
total duration equal to 8 beats.

25
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12. Solutions to Sample Exam

1. There are 2* = 16 sequences, because the sequences are binary codes.
They are HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT,
THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT.

2. There is 1 pattern with 4 T’s, 4 patterns with 3 T’s, 6 patterns with 2 T’s,
4 patterns with 1 T, and 1 pattern with no T’s. The numbers 1, 4, 6, 4, 1
form the fourth row in Pascal’s triangle.

3. There are 2'° = 1024 codes. Because the length-10 codes are found by
adding a 1 to the end of each of the length-9 codes, then adding a 0 to
the end, exactly half (512) begin with 0 and half begin with 1.

4. Patterns with duration 9 beats are formed by either adding a 1 to the
beginning of an 8-beat pattern, or adding a 2 to the beginning of a 7-
beat pattern. There are 34 8-beat patterns and 21 7-beat patterns.

5. There are 2" = 128 meters. The numbers of meters of each type are
found in row 7 of the meruprastara: a) 1,b) 7, c) 21, d) 35, e) 35, f) 21,
g)7,h) 1.

6. There are 27 = 128 patterns. The percentages of patterns of each type
are found by dividing row 7 of the meruprastara by 128: a) 0.78%,
b) 5.47%, c) 16.41%, d) %, e) 27.34%, f) 16.41%, g) 5.47%, h) 0.78%.

7. SSSSSS has duration 1+1+1+1+1+1=6, so the answer is the 6th Hemachan-
dra number: 13. LLLLLL has duration 12, so the answer is the 12th
Hemachandra number: 233.

8. The technique is to follow the procedure in Worksheet B. There are
e 1 pattern with duration 1 beat: 1
e 2 patterns with duration 2 beats: 1+1, 2
e 3 patterns with duration 3 beats: 1+2, 1+1+1, 2+1
e 6 patterns with duration 4 beats: 4, 1+1+2, 242, 1+2+1, 1+1+1+1, 2+1+1

These comprise the base case. The recursive rule is that each number in
the sequence is the sum of the numbers that are one, two, and four places
before it. In mathematical notation, if we let D[n]| be the number of
patterns with n beats, then D[n| = D[n — 1] + D[n — 2] + D[n — 4]. The
proof of this is similar to the proof of Theorem 2. Using the recursive
rule, the sequence is 1, 2, 3, 6, 10, 18, 31, 55, ..., so the answer is 55, the
eighth number.

9. The answers are Hemachandra/Fibonacci numbers: 1,1, 2,3, 5,8, ....
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10. a) The rule says that S[5] = S[5 — 1] + S[5 — 3] = S[4] + S[2] = 4.
b) S[100] = S[99] + S[97].

11. SL, SSM, MM, SSSS, SMS, MSS, LS.

12. 1 6 15 20 15 6 1. Adding adjacent numbers in the fifth row gives the
answer.

13. MMMMV, LLM, LML, MLL
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