The spectral measure of a dynamical system

Suddhasattwa Das

Department of Mathematical Sciences George Mason University.

sd141@gmu.edu

SIAM Minisymposium on Advances in Manifold Learning and Applications, Joint Mathematics Meetings (JMM21) January 09, 2021

joint work with Dimitris Giannakis, Joanna Slawinska

Funded by NSF, ONR and DARPA.

Continuous-time dynamical systems

Many deterministic physical systems are governed by an ODE

dx/dt = V(x).

- These equations are defined in a phase-space *M*, *V* is some vector field, *x* is some point in space.
- Φ^tx₀ denotes the unique solution curve to the above ODE with initial point x₀.
- More generally, one could define a flow $\Phi^t : M \to M$, without assuming an underlying vector field.

The Koopman operator U^t

Dynamics / trajectories on phase space \leftrightarrow Dynamics in observation spaces (e.g. $L^2(X, \mu)$ or $C^0(X)$). Given a function f.

 $(U^t f)$ is another observable $: x \mapsto f(\Phi^t x)$.

The operator theoretic approach to dynamical systems \rightarrow spectral theory of dynamical systems.

Invariant measure μ and $L^2(\mu)$

- An invariant measure μ on the attractor / invariant set X.
- It is said to be ergodic if there are no proper invariant subsets.
- Ergodicity is closely related to the concept of *equidistribution*, i.e., the statistical properties along a trajectory is the SAME as the statistical properties over the entire phase space.
- The Hilbert space $L^2(\mu)$ of square-integrable functions.

$$\|f\|_{L^2(\mu)}^2 = \int_M |f(x)|^2 d\mu(x), \quad \langle f, g \rangle_{L^2(\mu)} = \int_M f(x) \overline{g}(x) d\mu(x)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Discrete and continuous components

Koopman eigenfunction : $U^t z = e^{\iota \omega t} z$.

Let \mathcal{D} be the closed subspace spanned by all eigenfunctions. It is non-empty.

$$U^t \overset{}{\bigodot} \mathcal{D} \oplus \mathcal{D}^{\perp} \overset{}{\swarrow} U^t$$

 \mathcal{D} corresponds to quasiperiodic dynamics \mathcal{D}^{\perp} is the functional analog of chaotic dynamics. It corresponds to decay of correlations and weak mixing.

Koopman eigenfunctions and forecasting

$$U^t z = e^{\iota \omega t} z$$

 U^t is unitary. So all the eigenvalues are **unit-norm**.

• Thus Koopman eigenfunctions have nice time-evolution.

$$z(\Phi^t x) = e^{\iota \omega t} z(x), \quad \forall t, \quad \forall x.$$

• This makes them a useful basis for forecasting.

$$f = \sum_{j} a_{j} z_{j} \Rightarrow U^{t} f = \sum_{j} a_{j} e^{\iota \omega_{j} t} z_{j}.$$

• Any collection of eigenfunctions z_1, \ldots, z_d gives an embedded / factor dynamics on the d-torus.

$$\begin{array}{ccc} X & \stackrel{\Phi^{t}}{\longrightarrow} X \\ (z_{1},...,z_{d}) & & \downarrow (z_{1},...,z_{d}) \ ; & R_{\vec{\omega}}^{t} : \vec{\theta} \mapsto \vec{\theta} + \vec{\omega} \bmod 1 \\ & \mathbb{T}^{d} & \stackrel{R_{\vec{\omega}}^{t}}{\longrightarrow} \mathbb{T}^{d} \end{array}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Fourier and ergodic averaging

$$\mathcal{F}_{\omega,N}\phi = \frac{1}{N}\sum_{n=0}^{N-1} e^{\iota\omega n} U^{n\delta t}\phi$$

$$\left\|\mathcal{F}_{\omega,N}\phi\right\|_{L^{2}(\mu)}^{2} = \int_{0}^{2\pi} \mathcal{S}_{N}^{2}(\theta-\omega)d\mu_{\phi}(\theta)$$
$$\mathcal{S}_{N}(x) \coloneqq \left|\frac{\sin(Nx/2)}{N\sin(x/2)}\right|$$

For quasiperiodic systems $\mathcal{F}_{\omega,N}$ converges to the projection onto the eigenspace corresponding to eigenfrequency ω , as $N \to \infty$. For the L63 system,

$$\sup_{\omega \in \mathbb{R} \smallsetminus \{0\}} \left\| \mathcal{F}_{\omega,N} \phi \right\|_{L^{2}(\mu)}^{2} = O\left(N^{-2}\right) \quad \text{as } N \to \infty.$$

The generator of the Koopman operator

$$U^t: L^2(\mu) \to L^2(\mu), \quad (U^t f): x \mapsto f\left(\Phi^t x\right).$$

$$U^{t} = e^{tV} = \sum_{n=0}^{\infty} \frac{1}{n!} t^{n} V^{n}$$

Conclusion

One-parameter subgroup

$$U^t: L^2(\mu) \to L^2(\mu), \quad (U^t f): x \mapsto f(\Phi^t x).$$

 U^t is a 1-parameter unitary group.

$$U^t = e^{tV} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n V^n$$

 $V(f) \coloneqq \lim_{t \to 0} t^{-1} \left[U^t f - f \right], \quad C^1 \subset \operatorname{dom}(v) \subset_{\operatorname{dense}} L^2(\mu)$

The spectral measure

$$U^t: L^2(\mu) \to L^2(\mu), \quad Vf \coloneqq \lim_{t \to 0} t^{-1} \left[U^t f - f \right], \quad U^t = e^{tV}.$$

Spectral measure

An operator-valued measure

$$E$$
: Borel(\mathbb{R}) \rightarrow Projection operators on $L^2(\mu)$

which assigns to every measurable set $U \subseteq \mathbb{R}$ a projection operator E(U); $E(\mathbb{R}) = Id$; $E(\emptyset) = 0$; and

$$E(U \cap V) = E(U)E(V) = E(V)E(U)$$

$$V = \int_{\mathbb{R}} \iota \omega dE(\omega), \quad U^{t} = \int_{\mathbb{R}} e^{\iota t \omega} dE(\omega) = \int_{S^{1}} z^{t} d\tilde{E}(z).$$

200

(日) (日) (日) (日) (日) (日) (日) (日)

Spectral measure for quasiperiodic systems

For quasiperiodic dynamics, $\mathcal{D} = L^2(\mu)$, $\mathcal{D}^{\perp} = \{0\}$.

The spectral measure E is a discrete measure, composed of projections along each individual Koopman eigenfunction.

$$E(U) = \sum_{\omega_j \in U} \langle z_j, \cdot \rangle_{L^2(\mu)} z_j$$

Spectral measure for weakly mixing systems

For weakly mixing / chaotic systems, $\mathcal{D} = \{\text{constants}\}, \mathcal{D}^{\perp} = L_0^2(\mu)$.

Spectral decomposition theorem

For systems such as the L63 attractor, the unitary group U^t is isomorphic to a multiplication operator on $L^2(S^1)$. On every cyclic space, U^t has a spectral density.

Spectral approximation scheme

- There is a family $\{\tilde{V}_{\tau} : \tau > 0\}$ of compact operators on $L^2(\mu)$ which converges to V on C^2 functions
- The \tilde{V}_{τ} are conjugate to a compact, skew-adjoint operator W_{τ} on an associated Hilbert space \mathcal{H}_{τ} .
- The W_τ have complete eigenbasis of functions {ζ_{τ,j}:j} and corresponding eigenvalues {ω_{τ,j}:j}.

 Reproducing kernel Hilbert space compactification of unitary evolution groups

 - Giannakis, Das, Slawinska

Approximations

Theorem A. For every element $i\omega$, $\omega \in \mathbb{R}$, of the spectrum of the generator V, there exists a continuous curve $\tau \mapsto \omega_{\tau}$ such that $i\omega_{\tau}$ is an eigenvalue of W_{τ} , and $\lim_{\tau \to 0^+} \omega_{\tau} = \omega$.

Approximations

Theorem B. For every interval $U = [a, b] \subset \mathbb{R}$ such that a, b are not eigenvalues, $E_{\tau}(U)$ converges strongly to E(U) as $\tau \to 0^+$, in the strong operator topology.

3

Approximations

Conclusion

Coherent spatiotemporal patterns

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approximate eigenfunctions

$$(U^t z)(x) = z(\Phi^t x) \approx e^{\iota \omega t} z(x)$$

More precisely, ω is an $\epsilon\text{-approximate}$ eigenfrequency upto time $\mathcal{T}>0$ if

$$\left\| U^{t}z - e^{\iota \omega t}z \right\|_{L^{2}(\mu)} < \epsilon, \quad 0 \le t \le T$$

- True eigenfrequencies are approximate eigenfrequencies.
- Any $\omega \in \text{supp}(E)$ is an approximate eigenfrequency, and
- for every ε, T, it has a corresponding approximate eigenfunction.

Approximations

Theorem C. If the energy along a continuous curve $\tau \mapsto \omega_{\tau}$ remains bounded as $\tau \to 0^+$, the the associated ζ_{τ} converges to an approximate Koopman eigenfunction.

イロト 不同下 不同下 不同下

3

Predictions for the L63 attractor.

Theorem D : For fixed *t*, $U^{tW_{\tau}}$ converges strongly to $U^t = e^{tV}$, as $\tau \to 0^+$.

Summary

- The spectral measure is the underlying mechanism for many results in ergodic averaging and signal processing.
- The evolution of a measurement / observation under the flow is directly expressed by the Koopman group U^t . U^t in turn is determined by the spectral measure E.
- For chaotic systems, there are uncountable number of approximate eigenfunctions for arbitrary error ϵ and arbitrary lead-time t.
- Thus spectral theory supports the fact that chaotic systems show almost-periodic behavior at every time-scale.
- It is possible to approximate spectral measure by compactifying the generator.
- We used kernel-integral operators and associated RKHS for the compactification.

References

- D Giannakis, S Das, J. Slawinska, *Reproducing kernel Hilbert space compactification of unitary evolution groups*, Arxiv: 1808.01515, 2018
- S Das, D Giannakis, *Delay-coordinate maps and the spectra* of Koopman operators, J. Stat. Phys. 175.6, 2019
- D Giannakis, S Das, *Extraction and Prediction of Coherent Patterns in Incompressible Flows through Space-Time Koopman Analysis*, **Phys. D 402**, 2019
- S Das, D Giannakis, *Koopman spectra in reproducing kernel Hilbert spaces*, **Arxiv : 1801.07799**, 2017
- S Das, J. Yorke, Super convergence of ergodic averages for quasiperiodic orbits, Nonlinearity : 31.2, 2018

Thank you