Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms

Ka Ho WONG

Texas A&M University

Jan 7, 2021

Review of the construction of SO(3) quantum invariants at $q = e^{\frac{2\pi i}{r}}$

Given an odd integer $r = 2N + 1 \ge 3$. Consider the primitive *r*-th root of unity $q = e^{\frac{2\pi i}{r}}$.

- The Kauffman bracket for a framed link *L* with a plane diagram *D*, denoted by $\langle D \rangle$, is defined by the following rules.
 - Kauffman bracket skein relation:

$$\langle \bigotimes \rangle = e^{\frac{\pi\sqrt{-1}}{r}} \langle \bigotimes \rangle + e^{-\frac{\pi\sqrt{-1}}{r}} \langle \bigotimes \rangle$$

Framing relation:

$$\langle L \coprod O \rangle = \left(-e^{\frac{2\pi\sqrt{-1}}{r}} - e^{-\frac{2\pi\sqrt{-1}}{r}}\right) \langle L \rangle$$

• Special diagrams (linear combination of diagrams):

m-th Jones-Wenzl idempotent e_m Kirby coloring Ω_r

SO(3) relative Reshetikhin-Turaev invariants for the pair (M, L)

Let $I_r = \{0, 2, 4, \dots, r-3\}$ be the set of even integers in between 0 and r-2. For a closed, oriented 3-manifold $M = \mathbb{S}_{L^r}^3$ obtained by doing surgery along the framed link $\mathbf{L}' \subset \mathbb{S}^3$, $\mathbf{L} = \mathbf{L}_1 \cup \dots \mathbf{L}_n \subset M$ framed link, $\mathbf{m} \in I_r^n = \{0, 2, \dots, r-3\}^n$,

• the **m**-th relative Reshetikhin-Turaev invariants (in short, relative RT invariants) of the pair (*M*, *L*) is defined by

$$RT_r(M, \mathbf{L}, \mathbf{m}) = (\dots) \langle e_{m_1}, \dots, e_{m_n}, \Omega_r, \dots, \Omega_r \rangle_{D(\mathbf{L} \cup \mathbf{L'})}$$

SO(3) relative Reshetikhin-Turaev invariants for the pair (M, L)

In particular,

• When $M = \mathbb{S}^3$, then

$$RT_r(\mathbb{S}^3, L, \mathbf{m}) = (\dots) \langle e_{m_1}, \dots, e_{m_n} \rangle_{D(L)} = (\dots) J_{\mathbf{m}}(L, t = q^2 = e^{\frac{2\pi i}{N+\frac{1}{2}}})$$

 $\bullet~$ When m=0, then

$$RT_r(M, L, \mathbf{0}) = RT_r(M)$$

Q: What is the topological and geometrical meaning of the invariants?

Volume conjecture: a study about the asymptotics of quantum invariants and the relationship with topology/geometry

Quantum invariants	$RT_r(M, L, \mathbf{N})$	$RT_r(M, L, \mathbf{m})$	$RT_r(M, L, 0)$
	$\left(=J_{N}(L,e^{\frac{2\pi i}{N+\frac{1}{2}}}),M=\mathbb{S}^{3}\right)$		$(= RT_r(M))$
Hyperbolic Geometry	?	?	?

Conjecture: (W.-Yang '20)

For a sequence $\mathbf{m}^{(r)} = (m_1^{(r)}, \dots, m_n^{(r)}) \in I_r^n = \{0, 2, \dots, r-3\}^n$, let

$$heta_k = \left| 2\pi - \lim_{r o \infty} rac{4\pi m_k^{(r)}}{r}
ight| \in [0, 2\pi]$$

and let $\theta = (\theta_1, \dots, \theta_n)$. If $M_{L_{\theta}}$ is a hyperbolic cone manifold consisting of M and a hyperbolic cone metric on M with singular locus L and cone angles θ , then

$$\lim_{\substack{r\to\infty\\r\text{ odd}}}\frac{4\pi}{r}\log\operatorname{RT}_r(M,L,\mathbf{m}^{(r)})=\operatorname{Vol}(M_{L_\theta})+\sqrt{-1}\operatorname{CS}(M_{L_\theta}) \quad \text{mod } \sqrt{-1}\pi^2\mathbb{Z},$$

where $Vol(M_{L_{\theta}})$ and $CS(M_{L_{\theta}})$ are the hyperbolic volume and the Chern-Simons invariants of the cone manifold $M_{L_{\theta}}$.

Relationship with Kashaev-Murakami-Murakami and Chen-Yang Volume conjectures

Recall that
$$r = 2N + 1$$
, $\theta_k = \left| 2\pi - \lim_{r \to \infty} \frac{4\pi m_k^{(r)}}{r} \right| \in [0, 2\pi]$
• When $M = \mathbb{S}^3$ and $\mathbf{m} = \mathbf{N}$, since $RT_r(\mathbb{S}^3, L, \mathbf{N}) = (\dots) J_{\mathbf{N}}(L, e^{\frac{2\pi i}{N + \frac{1}{2}}})$ and $\theta = (0, \dots, 0)$, the conjecture suggests that for a hyperbolic link L , we have

$$\lim_{N\to\infty}\frac{2\pi}{N+\frac{1}{2}}\log J_{\mathsf{N}}(L,e^{\frac{2\pi i}{N+\frac{1}{2}}})=\mathsf{Vol}(\mathbb{S}^{3}\backslash L)+\sqrt{-1}\,\mathsf{CS}(\mathbb{S}^{3}\backslash L)$$

• When $\mathbf{m} = \mathbf{0}$, since $RT_r(M, L, \mathbf{0}) = RT_r(M)$ and $\theta = (2\pi, \dots, 2\pi)$, the conjecture suggests that for every closed, oriented hyperbolic 3-manifold M with finite volume,

$$\lim_{\substack{r\to\infty\\r\text{ odd}}}\frac{4\pi}{r}\log\left(RT_r(M)\right)=\operatorname{Vol}(M)+\sqrt{-1}\operatorname{CS}(M)$$

Volume conjecture for the relative Reshetikhin-Turaev invariants

Quantum	$RT_r(M, L, \mathbf{N})$	$RT_r(M, L, \mathbf{m})$	$RT_r(M, L, 0)$
invariants	$\left(=J_{N}(L,e^{\frac{2\pi i}{N+\frac{1}{2}}}),M=\mathbb{S}^{3}\right)$		$(= RT_r(M))$
Hyperbolic	cusp manifold	cone manifold	closed manifold
Geometry	(complete str.)	(incomplete str.)	(Dehn filling)
	Kashaev-Murakami		Chen-Yang VC
	-Murakami VC		
Cone angle	0	$ heta = \left 2\pi - \lim_{r \to \infty} \frac{4\pi m^{(r)}}{r} \right $	2π

Fundamental shadow links

Fundamental shadow links: $\{L_{FSL} \subset M_c = \#^c \mathbb{S}^2 \times \mathbb{S}^1\}$ (FSL pair (M_c, L_{FSL}))

- [Costantino-Thurston] Any compact oriented 3-manifold with toroidal or empty boundary can be obtained from a suitable fundamental shadow link complement by doing an integral Dehn-filling to some of the boundary components.
- the m-th relative RT invariants of $(M_c, L_{FSL}, \mathbf{m})$ is given by

 $RT_r(M_c, L_{FSL}, \mathbf{m}) \sim \prod \text{Quantum 6j-symbols}$

• [Belletti-Detcherry-Kalfagianni-Yang] The VC for $RT_r(M_c, L_{FSL}, \mathbf{N})$ is true.

Change-of-pair operation

Given (M, L), choose some components of the frame link L.

Step 1: do surgeries along those components;

Step 2: remove the curves isotopic to the core curves of the Dehn-filled tori in Step 1.

Proposition

If (M, L) and (M^*, L^*) are related by a change-of-pair operation, then $M \setminus L \simeq M^* \setminus L^*$. Moreover, if (M, L) and (M^*, L^*) are two pairs so that $M \setminus L \simeq M^* \setminus L^*$, then they are related by a sequence of change-of-pair operations.

Main results

Theorem 1 (W.-Yang '20)

Conjecture is true for all pairs (M, L) obtained by doing a change-of-pair operation from the pair (M_c, L_{FSL}) , for small cone angle.

Theorem 2 (Pandey-W. in progress)

Conjecture is true for all pairs (M, L) obtained by doing any sequence of change-of-pair operations from (M_c, L_{FSL}) , for small cone angle.

Remarks:

- *M* in Theorem 1 & 2 cover all closed, oriented 3-manifold *M*.
- If we can push the cone angle from small all the way to 2π, then we can prove the Chen-Yang volume conjecture for the Reshetikhin-Turaev invariants for closed, oriented 3-manifold.

Main results

Quantum	$RT_r(M, L, \mathbf{N})$	$RT_r(M, L, \mathbf{m})$	$RT_r(M, L, 0)$
invariants	$\left(=J_{N}(L,e^{\frac{2\pi i}{N+\frac{1}{2}}}),M=\mathbb{S}^{3}\right)$		$(= RT_r(M))$
Hyperbolic	cusp manifold	cone manifold	closed manifold
Geometry	(complete str.)	(incomplete str.)	(Dehn filling)
	Kashaev-Murakami		Chen-Yang VC
	-Murakami VC		
Cone angle	0	$\theta = \left 2\pi - \lim_{r \to \infty} \frac{4\pi m^{(r)}}{r} \right $	2π

Theorem 3 (W.-Yang '20)

Conjecture is true for all pairs obtained by doing any sequence of change-of-pair operations on $(S^3, 4_1)$ for all cone angle $\theta \in [0, 2\pi]$, except finitely many cases.

Topology	Geometry	Quantum topology
Change-of-pair operations	Different cone metrics	Discrete Fourier transform
$(M,L)\mapsto (M^*,L^*)$	\downarrow	$RT_r(M, L, _) \mapsto RT_r(M^*, L^*, _)$
Same complement	Same cusp metric	Same Turaev-Viro invariants

Poisson summation formula for the Discrete Fourier transform (W.-Yang '20)

$$\sum_{\mathbf{m}} |RT_r(M, L, \mathbf{m})|^2 = \sum_{\mathbf{n}} |RT_r(M^*, L^*, \mathbf{n})|^2.$$

Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms

Thank you!

Appendix: definition of the discrete Fourier transform

Let $f : I_r^n \to \mathbb{C}$, (I, J) be a partition of $\{1, \ldots, n\}$ and let $\mathbf{n}_I = (n_i)_{i \in I}$ be a |I|-tuple of elements of I_r . Then the \mathbf{n}_I -th partial discrete Fourier coefficient of f is the function

$$\widehat{f}(\mathbf{n}_{l}):\mathrm{I}_{r}^{|J|}
ightarrow\mathbb{C}$$

defined for all \mathbf{m}_J in \mathbf{I}_r^J by

$$\widehat{f}(\mathbf{n}_{l})(\mathbf{m}_{J}) = \mu_{r}^{|l|} \sum_{\mathbf{m}_{l}} \left(\prod_{i \in I} \mathrm{H}(\mathbf{n}_{i}, \mathbf{m}_{i}) \right) f(\mathbf{m}_{l}, \mathbf{m}_{J}),$$

where the sum is over all |I|-tuples $\mathbf{m}_I = (m_i)_{i \in I}$ of elements of I_r , and

$$H(n,m) = (-1)^{m+n} \frac{q^{(n+1)(m+1)} - q^{-(n+1)(m+1)}}{q - q^{-1}}.$$