Graded rings of rational twist in prime characteristic

Florian Enescu and Yongwei Yao, Georgia State University

Special session on commutative algebra, Southeastern AMS Meeting

October 11, 2020

Let $n \ge 0$ integer. What is $|\{(i, j, k) \in \mathbb{Z}_{\ge 0} : 2i + 3j + 5k = n \cdot 30\}|$?

・ロン ・回と ・ヨン ・ヨン

æ

Let $n \ge 0$ integer. What is $|\{(i, j, k) \in \mathbb{Z}_{\ge 0} : 2i + 3j + 5k = n \cdot 30\}|$?

Hilbert theory says that there is a polynomial of degree 2, $h_0(x)$, such that

$$h_0(n \cdot 30) = |\{(i, j, k) : 2i + 3j + 5k = n \cdot 30\}|, \forall n \ge 0.$$

소리가 소문가 소문가 소문가

Let $n \ge 0$ integer. What is $|\{(i, j, k) \in \mathbb{Z}_{\ge 0} : 2i + 3j + 5k = n \cdot 30\}|$?

Hilbert theory says that there is a polynomial of degree 2, $h_0(x)$, such that

$$h_0(n \cdot 30) = |\{(i, j, k) : 2i + 3j + 5k = n \cdot 30\}|, \forall n \ge 0.$$

Here
$$h_0(x) = \frac{1}{60}x^2 + \frac{1}{6}x + 1$$
. Also, $h_0(x-1) = \frac{1}{60}x^2 + \frac{2}{15}x + \frac{17}{20}$.

소리가 소문가 소문가 소문가

Let $n \ge 0$ integer. What is $|\{(i, j, k) \in \mathbb{Z}_{\ge 0} : 2i + 3j + 5k = n \cdot 30\}|$?

Hilbert theory says that there is a polynomial of degree 2, $h_0(x)$, such that

$$h_0(n \cdot 30) = |\{(i, j, k) : 2i + 3j + 5k = n \cdot 30\}|, \forall n \ge 0.$$

Here
$$h_0(x) = \frac{1}{60}x^2 + \frac{1}{6}x + 1$$
. Also, $h_0(x-1) = \frac{1}{60}x^2 + \frac{2}{15}x + \frac{17}{20}$.

Let d_1, \dots, d_m pairwise relatively prime and $D = d_1 \dots d_m$. There is a polynomial of degree m - 1, $h_0(x)$, such that

$$h_0(n \cdot D) = |\{(i_1, i_2, \dots, i_m) \in \mathbb{Z}_{\geq 0} : \sum_k i_k d_k = n \cdot D\}|.$$

Let $n \ge 0$ integer. What is $|\{(i, j, k) \in \mathbb{Z}_{\ge 0} : 2i + 3j + 5k = n \cdot 30\}|$?

Hilbert theory says that there is a polynomial of degree 2, $h_0(x)$, such that

$$h_0(n \cdot 30) = |\{(i, j, k) : 2i + 3j + 5k = n \cdot 30\}|, \forall n \ge 0.$$

Here
$$h_0(x) = \frac{1}{60}x^2 + \frac{1}{6}x + 1$$
. Also, $h_0(x-1) = \frac{1}{60}x^2 + \frac{2}{15}x + \frac{17}{20}$.

Let d_1, \dots, d_m pairwise relatively prime and $D = d_1 \dots d_m$. There is a polynomial of degree m - 1, $h_0(x)$, such that

$$h_0(n \cdot D) = |\{(i_1, i_2, \dots, i_m) \in \mathbb{Z}_{\geq 0} : \sum_k i_k d_k = n \cdot D\}|.$$

Are the coefficients of $h_0(x-1)$ always nonnegative?

Let A be a \mathbb{N} -graded, noncommutative ring, $A = \bigoplus_{e \ge 0} A_e$, such that $A_0 = R$ is a Noetherian commutative ring.

(ロ) (同) (E) (E) (E)

Let A be a \mathbb{N} -graded, noncommutative ring, $A = \bigoplus_{e \ge 0} A_e$, such that $A_0 = R$ is a Noetherian commutative ring.

Let $G_e(A) = G_e$ be the subring of A generated by homogeneous elements of degree less or equal to e.

(ロ) (同) (E) (E) (E)

Let A be a \mathbb{N} -graded, noncommutative ring, $A = \bigoplus_{e \ge 0} A_e$, such that $A_0 = R$ is a Noetherian commutative ring.

Let $G_e(A) = G_e$ be the subring of A generated by homogeneous elements of degree less or equal to e.

We will denote the minimal number of homogeneous generators of G_e as a subring of A over $A_0 = R$ by k_e .

Definition

The sequence $\{k_e\}_e$ is called the *growth* sequence for *A*. The *complexity* sequence is given by $\{c_{A,e} = k_{e+1} - k_e\}_e$. The *complexity* of *A* is

$$\inf\{n > 0 : k_{e+1} - k_e = O(n^e)\}$$

and it is denoted by cx(A). It is obvious that cx(A) = 0 when A is finitely generated as a ring over $A_0 = R$.

Definition

Let A be a \mathbb{N} -graded ring such that there exists a ring homomorphism $R \to A_0$, where R is a commutative ring. We say that A is a (left) *R*-skew algebra if $aR \subseteq Ra$ for all homogeneous elements $a \in A$.

イロン イヨン イヨン イヨン

Definition

Let A be a \mathbb{N} -graded ring such that there exists a ring homomorphism $R \to A_0$, where R is a commutative ring. We say that A is a (left) *R*-skew algebra if $aR \subseteq Ra$ for all homogeneous elements $a \in A$.

Corollary

Let A be a degree-wise finitely generated R-skew algebra such that $R = A_0$. Then $c_e(A)$ equals the minimal number of generators of $\frac{A_e}{(G_{e-1})_e}$ as a left R-module for all e.

(ロ) (同) (E) (E) (E)

Let *E* be the injective hull of *k* over *R*. Let $\mathscr{F}^{e}(E)$ be the collection of all additive maps $\phi : E \to E$ such that $\phi(r \cdot z) = r^{p^{e}}\phi(z)$, for all $r \in R, z \in E$.

Let *E* be the injective hull of *k* over *R*. Let $\mathscr{F}^{e}(E)$ be the collection of all additive maps $\phi : E \to E$ such that $\phi(r \cdot z) = r^{p^{e}}\phi(z)$, for all $r \in R, z \in E$.

$$\mathscr{F}(E) = \oplus_{e \geq 0} \mathscr{F}^{e}(E).$$

소리가 소문가 소문가 소문가

Let *E* be the injective hull of *k* over *R*. Let $\mathscr{F}^{e}(E)$ be the collection of all additive maps $\phi : E \to E$ such that $\phi(r \cdot z) = r^{p^{e}}\phi(z)$, for all $r \in R, z \in E$.

$$\mathscr{F}(E) = \oplus_{e \geq 0} \mathscr{F}^e(E).$$

Definition

We define the Frobenius complexity of the ring R by

$$\operatorname{cx}_F(R) = \log_p(\operatorname{cx}(\mathscr{F}(E))).$$

Also, let $k_e^{\mathscr{F}} := k_e(\mathscr{F}(E))$, for all e and call these numbers the Frobenius growth sequence and $c_e = k_{e+1} - k_e$ defines the complexity sequence.

Let \mathscr{R} be a \mathbb{N} -graded commutative ring of prime positive characteristic p with $\mathscr{R}_0 = R$. The following construction was introduced by Katzman, Schwede, Singh and W.Zhang.

Let \mathscr{R} be a \mathbb{N} -graded commutative ring of prime positive characteristic p with $\mathscr{R}_0 = R$. The following construction was introduced by Katzman, Schwede, Singh and W.Zhang.

Let $T_e = \mathscr{R}_{p^e-1}$ and $T(\mathscr{R}) = \bigoplus_e T_e = \bigoplus_{e \ge 0} \mathscr{R}_{p^e-1}$. Define a ring structure on $T(\mathscr{R})$ by $a \in T_e, b \in T_{e'}$ such that

$$a * b = ab^{p^e}.$$

Let \mathscr{R} be a \mathbb{N} -graded commutative ring of prime positive characteristic p with $\mathscr{R}_0 = R$. The following construction was introduced by Katzman, Schwede, Singh and W.Zhang.

Let $T_e = \mathscr{R}_{p^e-1}$ and $T(\mathscr{R}) = \bigoplus_e T_e = \bigoplus_{e \ge 0} \mathscr{R}_{p^e-1}$. Define a ring structure on $T(\mathscr{R})$ by $a \in T_e, b \in T_{e'}$ such that

$$a * b = ab^{p^e}.$$

This operation together with the natural addition inherited from \mathscr{R} defines a noncommutative \mathbb{N} -graded ring.

소리가 소문가 소문가 소문가

Let \mathscr{R} be a \mathbb{N} -graded commutative ring of prime positive characteristic p with $\mathscr{R}_0 = R$. The following construction was introduced by Katzman, Schwede, Singh and W.Zhang.

Let $T_e = \mathscr{R}_{p^e-1}$ and $T(\mathscr{R}) = \bigoplus_e T_e = \bigoplus_{e \ge 0} \mathscr{R}_{p^e-1}$. Define a ring structure on $T(\mathscr{R})$ by $a \in T_e, b \in T_{e'}$ such that

$$a * b = ab^{p^e}.$$

This operation together with the natural addition inherited from \mathscr{R} defines a noncommutative \mathbb{N} -graded ring.

 $T_0 = R$ and if $a \in T_e, r \in R$, then $a * r = ar^{p^e} = r^{p^e}a = r^{p^e} * a$ and hence $T(\mathscr{R})$ is a skew *R*-algebra.

Let *R* be a local normal complete ring. For a divisorial ideal *I*, i.e. an ideal of pure height one, we denote $I^{(n)}$ its *n*th symbolic power.

Let R be a local normal complete ring. For a divisorial ideal I, i.e. an ideal of pure height one, we denote $I^{(n)}$ its *n*th symbolic power.

Let ω be a canonical ideal of R.

Let *R* be a local normal complete ring. For a divisorial ideal *I*, i.e. an ideal of pure height one, we denote $I^{(n)}$ its *n*th symbolic power.

Let ω be a canonical ideal of R.

The anticanonical cover of the ring R is defined as

$$\mathscr{R} = \mathscr{R}(\omega) = \oplus_{n \ge 0} \omega^{(-n)}.$$

Let *R* be a local normal complete ring. For a divisorial ideal *I*, i.e. an ideal of pure height one, we denote $I^{(n)}$ its *n*th symbolic power.

Let ω be a canonical ideal of R.

The anticanonical cover of the ring R is defined as

$$\mathscr{R} = \mathscr{R}(\omega) = \oplus_{n \ge 0} \omega^{(-n)}.$$

Theorem (Katzman, Schwede, Singh, Zhang)

Let (R, \mathfrak{m}, k) as above, *E* the *R*-injective hull of *k*. Then there exists a graded isomorphism:

$$\mathscr{F}(E) \simeq T(\mathscr{R}(\omega)).$$

イロト イポト イラト イラト

Let \mathscr{R} be an \mathbb{N} -graded commutative ring of prime characteristic p with $\mathscr{R}_0 = R$. As before, let $T(\mathscr{R}) := \bigoplus_{e \ge 0} \mathscr{R}_{p^e - 1}$. Denote the following:

•
$$T := T(\mathscr{R}), \ T_e := T_e(\mathscr{R}) = \mathscr{R}_{p^e-1}.$$

・ロン ・回と ・ヨン・

Let \mathscr{R} be an \mathbb{N} -graded commutative ring of prime characteristic p with $\mathscr{R}_0 = R$. As before, let $T(\mathscr{R}) := \bigoplus_{e \ge 0} \mathscr{R}_{p^e - 1}$. Denote the following:

•
$$T := T(\mathscr{R}), \ T_e := T_e(\mathscr{R}) = \mathscr{R}_{p^e-1}.$$

•
$$G_e := G_e(T)$$
.

・ロン ・回と ・ヨン・

Let \mathscr{R} be an \mathbb{N} -graded commutative ring of prime characteristic p with $\mathscr{R}_0 = R$. As before, let $T(\mathscr{R}) := \bigoplus_{e \ge 0} \mathscr{R}_{p^e - 1}$. Denote the following:

•
$$T := T(\mathscr{R}), \ T_e := T_e(\mathscr{R}) = \mathscr{R}_{p^e-1}.$$

•
$$G_e := G_e(T)$$
.

・ロン ・回と ・ヨン・

Let \mathscr{R} be an \mathbb{N} -graded commutative ring of prime characteristic p with $\mathscr{R}_0 = R$. As before, let $T(\mathscr{R}) := \bigoplus_{e \ge 0} \mathscr{R}_{p^e - 1}$. Denote the following:

Let $\{c_e\}_{e\geq 0}$ equal the complexity sequence of T, and consider the generating function

$$\mathcal{C}_{\mathscr{R}}(z) = \mathcal{C}(z) := \sum_{e=0}^{\infty} c_e z^e = \sum_{e=1}^{\infty} c_e z^e \in \mathbb{Q}[[z]],$$

which we call the *twisted generating function* of \mathcal{R} .

Assume that \mathscr{R} is finitely generated over $\mathscr{R}_0 = R$ and that R is Noetherian.

Question

Is C(z) a rational function in z?

イロン 不同と 不同と 不同と

Assume that \mathscr{R} is finitely generated over $\mathscr{R}_0 = R$ and that R is Noetherian.

Question

Is C(z) a rational function in z?

イロン 不同と 不同と 不同と

Assume that \mathscr{R} is finitely generated over $\mathscr{R}_0 = R$ and that R is Noetherian.

Question

Is C(z) a rational function in z?

Josep Alvarez Montaner has also considered this question, in the cases studied in the literature.

Definition

We say that the grading on \mathscr{R} has rational twist if $\mathcal{C}(z)$ is a rational function in z.

Let $\alpha_1, \ldots, \alpha_d$ complex numbers, $d \ge 1$ and $\alpha_d \ne 0$. Let $f : \mathbb{N} \to \mathbb{C}$ a function. The following assertions are equivalent:

$$\sum_{n\geq 0} f(n)x^n = \frac{P(x)}{Q(x)},$$

where $Q(x) = 1 + \alpha_1 x + \ldots + \alpha_d x^d$ and $\deg(P(x)) < d$.

Let $\alpha_1, \ldots, \alpha_d$ complex numbers, $d \ge 1$ and $\alpha_d \ne 0$. Let $f : \mathbb{N} \to \mathbb{C}$ a function. The following assertions are equivalent:

$$\sum_{n\geq 0} f(n)x^n = \frac{P(x)}{Q(x)},$$

where $Q(x) = 1 + \alpha_1 x + \ldots + \alpha_d x^d$ and $\deg(P(x)) < d$. 2 For all $n \ge 0$

$$f(n+d) + \alpha_1 f(n+d-1) + \cdots + \alpha_d f(n) = 0$$

Let $\alpha_1, \ldots, \alpha_d$ complex numbers, $d \ge 1$ and $\alpha_d \ne 0$. Let $f : \mathbb{N} \to \mathbb{C}$ a function. The following assertions are equivalent:

$$\sum_{n\geq 0}f(n)x^n=\frac{P(x)}{Q(x)},$$

where $Q(x) = 1 + \alpha_1 x + \ldots + \alpha_d x^d$ and $\deg(P(x)) < d$. Solution For all $n \ge 0$

$$f(n+d) + \alpha_1 f(n+d-1) + \cdots + \alpha_d f(n) = 0$$

• For all $n \ge 0$,

$$f(n) = \sum_{i=1}^{k} P_i(n) \gamma_i^n,$$

where $1 + \alpha_1 x + \ldots + \alpha_d x^d = \prod_{i=1}^k (1 - \gamma_i x)^{d_i}$, the γ_i 's are distinct and nonzero and $P_i(n)$ is a polynomial of degree less than d_i .

Florian Enescu and Yongwei Yao, Georgia State University

Definition

We say that the grading on \mathscr{R} has rational twist of dominant eigenvalue if $\mathcal{C}(z)$ is a rational function of the form $\frac{P(z)}{Q(z)}$ if P, Q do not have common roots, $Q(0) \neq 0$ and Q has a unique simple root of minimal magnitude, denoted by $1/\gamma$.

・ロン ・回と ・ヨン ・ヨン

Definition

We say that the grading on \mathscr{R} has rational twist of dominant eigenvalue if $\mathcal{C}(z)$ is a rational function of the form $\frac{P(z)}{Q(z)}$ if P, Q do not have common roots, $Q(0) \neq 0$ and Q has a unique simple root of minimal magnitude, denoted by $1/\gamma$.

・ロン ・回と ・ヨン ・ヨン

Definition

We say that the grading on \mathscr{R} has rational twist of dominant eigenvalue if $\mathcal{C}(z)$ is a rational function of the form $\frac{P(z)}{Q(z)}$ if P, Q do not have common roots, $Q(0) \neq 0$ and Q has a unique simple root of minimal magnitude, denoted by $1/\gamma$.

Definition

If $c_e = c\gamma^e + \text{lower order terms } o(\gamma^e)$, then we call the number c the *twisted complexity multiplicity* of \mathscr{R} , or simply *t-multiplicity*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

We say that the grading on \mathscr{R} has rational twist of dominant eigenvalue if $\mathcal{C}(z)$ is a rational function of the form $\frac{P(z)}{Q(z)}$ if P, Q do not have common roots, $Q(0) \neq 0$ and Q has a unique simple root of minimal magnitude, denoted by $1/\gamma$.

Definition

If $c_e = c\gamma^e + \text{lower order terms } o(\gamma^e)$, then we call the number c the *twisted complexity multiplicity* of \mathscr{R} , or simply *t-multiplicity*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

We say that the grading on \mathscr{R} has rational twist of dominant eigenvalue if $\mathcal{C}(z)$ is a rational function of the form $\frac{P(z)}{Q(z)}$ if P, Q do not have common roots, $Q(0) \neq 0$ and Q has a unique simple root of minimal magnitude, denoted by $1/\gamma$.

Definition

If $c_e = c\gamma^e + \text{lower order terms } o(\gamma^e)$, then we call the number c the *twisted complexity multiplicity* of \mathscr{R} , or simply *t-multiplicity*. If \mathscr{R} is a graded ring of rational twist of dominant eigenvalue γ , then for $e \gg 0$, $c_e = c\gamma^e + \text{lower order terms } o(\gamma^e)$.

(日) (部) (注) (注) (言)

Question

Does \mathscr{R} have grading of rational twist?

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Question

Does \mathscr{R} have grading of rational twist?

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Question

Does \mathscr{R} have grading of rational twist?

Question

For a graded ring \mathscr{R} of rational twist, what is the meaning of the *t*-multiplicity?

・ロン ・聞と ・ほと ・ほと

Theorem

Let R be a commutative ring of positive characteristic p, with p prime.

イロン イヨン イヨン イヨン

э

Theorem

Let R be a commutative ring of positive characteristic p, with p prime.

• Let
$$\mathscr{R} = R[x_1, \ldots, x_m]$$
 graded with deg $(x_i) = d_i$,
 $i = 1, \ldots, m$. Then the grading on \mathscr{R} has rational twist

イロン イヨン イヨン イヨン

Theorem

Let R be a commutative ring of positive characteristic p, with p prime.

2 Let $\mathscr{R} = V_r(R[x_1, \ldots, x_m])$, where $r \ge 1$, be the *r*th Veronese subring of the standard graded polynomial ring $R[x_1, \ldots, x_m]$. Then the grading on \mathscr{R} has rational twist.

イロン イ部ン イヨン イヨン 三日

Let d_1, \ldots, d_m be relatively prime. Let E = ord(p) in \mathbb{Z}_D^{\times} and $D = gcd(d_1, \ldots, d_m)$. Let $\mathscr{R} = R[x_1, \ldots, x_m]$ graded with $deg(x_i) = d_i, i = 1, \ldots, m$.

Let d_1, \ldots, d_m be relatively prime. Let E = ord(p) in \mathbb{Z}_D^{\times} and $D = gcd(d_1, \ldots, d_m)$. Let $\mathscr{R} = R[x_1, \ldots, x_m]$ graded with $deg(x_i) = d_i, i = 1, \ldots, m$.

If D = 1 and m = 1, 2, then $c_e = 0$ for large enough e.

Let d_1, \ldots, d_m be relatively prime. Let E = ord(p) in \mathbb{Z}_D^{\times} and $D = gcd(d_1, \ldots, d_m)$. Let $\mathscr{R} = R[x_1, \ldots, x_m]$ graded with $deg(x_i) = d_i, i = 1, \ldots, m$.

If D = 1 and m = 1, 2, then $c_e = 0$ for large enough e.

Assume $h_0(x-1)$ has nonnegative coefficients and E = 1, 2. Assume $m \ge 3$ or m = 2, D > 1.

Let d_1, \ldots, d_m be relatively prime. Let E = ord(p) in \mathbb{Z}_D^{\times} and $D = gcd(d_1, \ldots, d_m)$. Let $\mathscr{R} = R[x_1, \ldots, x_m]$ graded with $deg(x_i) = d_i, i = 1, \ldots, m$.

If D = 1 and m = 1, 2, then $c_e = 0$ for large enough e.

Assume $h_0(x-1)$ has nonnegative coefficients and E = 1, 2. Assume $m \ge 3$ or m = 2, D > 1.

Then \mathscr{R} has a grading of rational twist of dominant type with dominant eigenvalue $p^{m-2} < \gamma_p < p^{m-1}$ where $\lim_{p \to \infty} \frac{\gamma_p}{p^{m-1}} = 1 - \frac{1}{(m-1)!D}$ and $\lim_{p \to \infty} c_p = \frac{1}{(m-1)!D-1}$.

イロト イポト イラト イラト 一日