# Generalized Gorenstein modules

## Alina Iacob

Department of Mathematical Sciences Georgia Southern University

October 2020

Alina Iacob (Department of Mathema Generalized Gorenstein modules

October 2020 1 / 19



2  $FP_n$ -injective and  $FP_n$ -flat modules





## Definition

We say that a module  $G \in Mod(R)$  is **Gorenstein projective** if there is an exact complex of projective modules

 $\mathbf{P} = \ldots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \to \ldots$  such that  $G = Z_0(P)$  and such that the complex stays exact when applying a functor Hom(-,T), where T is any projective module (i.e. the complex

 $\dots \to Hom(P_{-1},T) \to Hom(P_0,T) \to Hom(P_1,T) \to \dots$  is exact for any projective module T).

Any projective module P is Gorenstein projective  $(0 \to P \xrightarrow{Id} P \to 0)$ 

## Definition

We say that a module  $M \in Mod(R)$  is **Gorenstein injective** if there is an exact complex of injective modules  $\mathbf{I} = \ldots \to I_1 \to I_0 \to I_{-1} \to \ldots$ such that  $M = Z_0(I)$  and such that the complex stays exact when applying a functor Hom(A, -), where A is any injective module (i.e. the complex  $\ldots \to Hom(A, I_1) \to Hom(A, I_0) \to Hom(A, I_{-1}) \to \ldots$  is exact for any injective module A). A homomorphism  $\phi: G \to M$  is a Gorenstein projective precover of M if G is Gorenstein projective and if for any Gorenstein projective module G' and any  $\phi' \in Hom(G', M)$  there exists  $u \in Hom(G', G)$  such that  $\phi' = \phi u$ .



A precover  $g: G \to M$  is said to be a *cover* if any homomorphism  $u: G \to G$  such that gu = g, is an isomorphism.

A Gorenstein projective resolution of a module M is a complex

$$\dots \to G_1 \xrightarrow{g_1} G_0 \xrightarrow{g_0} M \to 0$$

such that  $G_0 \to M$  and each  $G_i \to Ker(G_{i-1} \to G_{i-2})$  for  $i \ge 1$  are Gorenstein projective precovers.

A module M has a Gorenstein injective preenvelope if there exists a homomorphism  $l: M \to F$  with F Gorenstein injective and such that for any Gorenstein injective module F', any homomorphism  $h: M \to F'$  factors through l (h = vl for some  $v \in Hom(F, F')$ ).



A preenvelope l is said to be an envelope if it has one more property: any  $v \in Hom(F, F)$  such that vl = l is an automorphism of F.

## **Open** question: the existence of the Gorenstein projective resolutions. **Generalizations of the Gorenstein modules - the Ding injective and Ding projective modules**

- The *Ding projective modules* are the cycles of the exact complexes of projective modules that remain exact when applying a functor Hom(-, F), with F any flat module.

- The Ding injective modules are the cycles of the exact complexes of injective modules that remain exact when applying a functor Hom(A, -), with A any FP-injective module. Open questions:

- is the class of Ding projectives,  $\mathcal{DP},$  precovering over any ring?
- is the class of Ding injectives,  $\mathcal{DI},$  preenveloping over any ring?

## $FP_n$ -injective and $FP_n$ -flat modules

## Definition

A module M is *n*-finitely presented ( $FP_n$  for short) if there exists an exact sequence  $F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to M \to 0$  with each  $F_i$  finitely generated free. A module M is  $FP_\infty$  if and only if  $M \in FP_n$  for all  $n \ge 0$ .

 $FP_0 \supseteq FP_1 \supseteq \ldots \supseteq FP_n \supseteq FP_{n+1} \supseteq \ldots \supseteq FP_{\infty}$ , with  $FP_0$  the class of all finitely generated modules, and  $FP_1$  the finitely presented modules. A module M is  $FP_n$ -injective if  $Ext_R^1(F, M) = 0$  for all  $F \in FP_n$ . From the definition, we get the following ascending chain:

$$Inj = \mathcal{FI}_0 \subseteq \mathcal{FI}_1 \subseteq \cdots \subset \mathcal{FI}_{\infty}.$$

A module N is  $FP_n$ -flat if  $Tor_1(F, N) = 0$  for all  $F \in FP_n$ .

From the definition, we get the following ascending chain:

$$Flat = \mathcal{FF}_0 = \mathcal{FF}_1 \subseteq \mathcal{FF}_2 \subseteq \cdots \subset \mathcal{FF}_{\infty}.$$

## Gorenstein $FP_n$ -injective modules.

**Definition.** We say that a module  $M \in Mod(R)$  is Gorenstein  $FP_n$ -injective if  $M = Z_0(\mathbf{I})$  for some exact complex of injective modules  $\mathbf{I} = \ldots \to I_1 \to I_0 \to I_{-1} \to \ldots$  that stays exact when applying a functor Hom(A, -), where A is any  $FP_n$ -injective module.  $\mathcal{GI}_n$  denotes the class of Gorenstein  $FP_n$ -injective modules.

By definition we get an ascending chain:

 $\mathcal{GI}_{\infty} = \mathcal{GI}_{ac} \subseteq \cdots \subseteq \mathcal{GI}_2 \subseteq \mathcal{GI}_1 = \mathcal{DI} \subseteq \mathcal{GI}_0 = \mathcal{GI}.$ 

Dually, A module G is Gorenstein  $FP_n$ -projective if it a cycle in an exact complex of projective modules that remains exact when applying a functor Hom(-, L) for any  $L \in \mathcal{FF}_n$ .

 $\mathcal{GP}_n$  denotes the class of Gorenstein  $FP_n$ -projective modules.

Main results for Gorenstein  $FP_n$ -injectives **Theorem A** Let R be any ring. For any  $n \ge 1$ ,  $({}^{\perp}\mathcal{GI}_n, \mathcal{GI}_n)$  is a hereditary cotorsion pair. In particular,  $({}^{\perp}\mathcal{DI}, \mathcal{DI})$  is a hereditary cotorsion pair.

**Theorem B** Let R be any ring. For any  $n \ge 2$ , the class  $\mathcal{GI}_n$  is enveloping.

**Proposition** If R is a coherent ring then  $\mathcal{DI}$  is enveloping.

Main result for Gorenstein  $FP_n$ -projective modules: **Theorem C**: Let R be any ring. For any  $n \ge 2$ ,  $\mathcal{GP}_n$  is a precovering class. A sufficient condition for a class C be precovering is to be the left half of a complete cotorsion pair.

Recall 
$$\mathcal{C}^{\perp} = \{M, Ext^{1}(C, M) = 0, \text{ for all } C \in \mathcal{C}\}$$
  
and  $^{\perp}\mathcal{C} = \{L, Ext^{1}(L, C) = 0, \text{ for all } C \in \mathcal{C}\}$   
- A pair  $(\mathcal{C}, \mathcal{L})$  is a *cotorsion pair* if  $\mathcal{C}^{\perp} = \mathcal{L}$  and  $^{\perp}\mathcal{L} = \mathcal{C}$ .  
- A cotorsion pair  $(\mathcal{C}, \mathcal{L})$  is *complete* if for every  $M$  there are short  
exact sequences  $0 \to L \to C \to M \to 0$  and  $0 \to M \to L' \to C' \to 0$ 

with  $C, C' \in \mathcal{C}$  and with  $L, L' \in \mathcal{L}$ .

A cotorsion pair  $(\mathcal{C}, \mathcal{L})$  is hereditary if  $Ext^i(C, L) = 0$  for any  $C \in \mathcal{C}$ , any  $L \in \mathcal{L}$ , all  $i \geq 1$ .

Examples: (Proj, Mod), (Mod, Inj).

**Theorem A** For any  $n \ge 1$ ,  $({}^{\perp}\mathcal{GI}_n, \mathcal{GI}_n)$  is a hereditary cotorsion pair. Known:  $({}^{\perp}\mathcal{GI}_n, ({}^{\perp}\mathcal{GI}_n)^{\perp})$  is a cotorsion pair.

## Proposition

Let  $M \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ . Then there is an exact complex  $0 \to M \to E^0 \xrightarrow{f_0} E^1 \xrightarrow{f_1} \dots$  with each  $E^j$  injective and with  $Kerf_j \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ , for all j.

## Proposition

Let  $M \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ . Then there is an exact complex ...  $\rightarrow E_1 \xrightarrow{f_1} E_0 \xrightarrow{f_0} M \rightarrow 0$  with each  $E_j$  injective, and with  $Ker(f_j) \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ , for each  $j \geq 0$ .

#### Lemma

 ${}^{\perp}\mathcal{GI}_n = {}^{\perp_{\infty}}\mathcal{GI}_n$ , with  ${}^{\perp_{\infty}}\mathcal{GI}_n$  the class of modules A such that  $Ext^i(A,G) = 0$  for all  $G \in \mathcal{GI}_n$ , and all  $i \ge 1$ .

Proof of Proposition 1.  $M \in \mathcal{GI} \cap \mathcal{FI}_n^{\perp}$ . - exact sequence  $0 \to M \to E^0 \to M^0 \to 0$  with  $E^0$  injective and  $M^0 \in \mathcal{GI}$  (1). - exact sequence  $0 \to G \to D \to A \to 0$  with  $D \in^{\perp} \mathcal{GI}, G \in \mathcal{GI}$  (2).  $A, D \in ^{\perp} \mathcal{GI}$  implies  $G \in ^{\perp} \mathcal{GI}$ . (2) gives an exact sequence  $0 = Ext^1(G, M) \to Ext^2(A, M) \to Ext^2(D, M) = 0 \ (D \in ^{\perp} \mathcal{GI}, M) = 0$  $M \in \mathcal{GI}$ Thus  $Ext^2(A, M) = 0.$ (1) gives an exact sequence  $0 = Ext^{1}(A, E^{0}) \to Ext^{1}(A, M^{0}) \to Ext^{2}(A, M) = 0.$  So  $M^0 \in ({}^{\perp}\mathcal{GI}_n)^{\perp}.$ Repeat with M replaced by  $M^0$  to obtain an exact  $0 \to M^0 \to E^! \to M^1 \to 0$  with  $E^1$  injective and  $M^1 \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ . Continuing we obtain an exact complex  $0 \to M \to E^0 \xrightarrow{f_0} E^1 \xrightarrow{f_1}$ with each  $E^j$  injective and with  $Kerf_i \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ , for all j.

**Theorem A** For any  $n \ge 1$ ,  $({}^{\perp}\mathcal{GI}_n, \mathcal{GI}_n)$  is a hereditary cotorsion pair. **Proof.** It is known that  $({}^{\perp}\mathcal{GI}_n, ({}^{\perp}\mathcal{GI}_n)^{\perp})$  is a cotorsion pair. By Proposition 1 there is an exact complex

 $0 \to M \to E^0 \xrightarrow{f_0} E^1 \xrightarrow{f_1} \ldots$  with each  $E^j$  injective and with  $Kerf_j \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ , for all j. By Proposition 2, there s also an exact complex  $\ldots \to E_1 \xrightarrow{g_1} E_0 \xrightarrow{g_0} M \to 0$  with each  $E_j$  injective, and with  $Ker(g_j) \in ({}^{\perp}\mathcal{GI}_n)^{\perp}$ , for each  $j \ge 0$ . Pasting them together we obtain an exact complex of injective modules,

 $\dots \to E_1 \to E_0 \to E^0 \to E^1 \to \dots$  with all cycles in  $({}^{\perp}\mathcal{GI}_n)^{\perp}$ . This means that the complex stays exact when applying a functor Hom(A, -) for any  $A \in {}^{\perp}\mathcal{GI}_n$ . In particular this is true for any  $A \in \mathcal{FI}_n$ . So all cycles are in  $\mathcal{GI}_n$  To prove Theorem B: To prove that  $({}^{\perp}\mathcal{GI}_n, \mathcal{GI}_n)$  is complete for  $n \geq 2$ :

#### Theorem

Let  $n \geq 2$ , and let  $\mathcal{F}$  denote the class of exact complexes of injective modules that stay exact when applying a functor Hom(A, -) for any  $FP_n$ -injective module A. Then  $({}^{\perp}\mathcal{F}, \mathcal{F})$  is a complete cotorsion pair.

## Proposition

Let X be a complex with  $H_i(X) = 0$  for i < 0, and  $X_i \in \mathcal{FI}_n$  for i > 0. Then  $X \in^{\perp} \mathcal{F}$  if and only if  $Z_0(X) \in^{\perp} \mathcal{GI}_n$ .

## Proposition

Let R be any ring. For any  $n \geq 2$ ,  $({}^{\perp}\mathcal{GI}_n, \mathcal{GI}_n)$  is a complete cotorsion pair.

**Proof.** There is an exact sequence  $0 \to \overline{M} \to F \to X \to 0$ . Applying  $Z_0 = Hom_{Ch(R)}(\overline{R}, -)$  we obtain an exact sequence  $0 \to M \to Z_0(F) \to Z_0(X) \to Ext^1(\overline{R}, \overline{M}) = 0$ , with  $Z_0(F) \in \mathcal{GI}_n$  and  $Z_0(X) \in^{\perp} \mathcal{GI}_n$ .

**Theorem B** Let R be any ring. For any  $n \ge 2$ , the class  $\mathcal{GI}_n$  is enveloping.

Proposition

The following are equivalent:

- 1. The class of Gorenstein  $\mathcal{FI}_n$ -injective modules is enveloping.
- 2. The class  $\perp \mathcal{GI}_n$  is covering.

**Proposition** If R is a coherent ring then  $\mathcal{DI}$  is an enveloping class.

## Gorenstein $FP_n$ -projective modules

## Definition

Let  $n \geq 1$  be an integer. A module G is Gorenstein  $FP_n$ -projective if it a cycle in an exact complex of projective modules that remains exact when applying a functor Hom(-, L) for any  $L \in \mathcal{FF}_n$ .

We use  $\mathcal{GP}_n$  to denote the class of Gorenstein  $\mathcal{FP}_n$ -projective modules.

- Since  $\mathcal{FF}_1 = Flat$ , so  $\mathcal{GP}_0 = \mathcal{DP}$  (the Ding projective modules).

- And  $\mathcal{FF}_{\infty} = Level$ , so  $\mathcal{GP}_{\infty} = \mathcal{GP}_{ac}$  (the Gorenstein AC-projective modules.

By definition we have an ascending chain

$$\mathcal{GP}_{\infty} = \mathcal{GP}_{ac} \subseteq \cdots \subseteq \mathcal{GP}_2 \subseteq \mathcal{GP}_1 = \mathcal{DP} \subseteq \mathcal{GP}.$$

Known: for  $n \geq 2$ ,  $M \in \mathcal{FF}_n \Leftrightarrow M^+ \in \mathcal{FI}_n$ and  $C \in \mathcal{FI}_n \Leftrightarrow C^+ \in \mathcal{FF}_n$ .

So, for  $n \ge 2$ ,  $(\mathcal{FI}_n, \mathcal{FF}_n)$  is a duality pair in the sense of Bravo - Gillespie - Hovey.

#### Theorem

(Bravo - Gillespie - Hovey) Let R be a ring and suppose  $(\mathcal{C}, \mathcal{D})$  is a duality pair such that  $\mathcal{D}$  is closed under pure quotients. Let P be a complex of projective modules. Then  $A \otimes P$  is exact for all  $A \in \mathcal{C}$  if and only if Hom(P, N) is exact for all  $N \in \mathcal{D}$ .

## Proposition

A module M is Gorenstein  $FP_n$ -projective if and only if there is an exact complex of projective modules  $P = \ldots \rightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \rightarrow \ldots$ such that  $M = Z_0(P)$  and such that  $A \otimes P$  is exact for all  $A \in \mathcal{FI}_n$ .

## Definition

Let  $\mathcal{B}$  be a class of right R-modules. We say that a module M is projectively coresolved Gorenstein  $\mathcal{B}$ -flat if  $M = Z_0(P)$  for some  $B \otimes -$ -acyclic and exact complex P of projective modules.

-  $\mathcal{PGF}_{\mathcal{B}}$  denotes the class of projectively coresolved Gorenstein  $\mathcal{B}\text{-flat}$  modules.

## Theorem

(joint with Estrada and Perez) If  $\mathcal{B}$  is a semi-definable class of right *R*-modules then  $(\mathcal{PGF}_{\mathcal{B}}, \mathcal{PGF}_{\mathcal{B}}^{\perp})$  is a complete hereditary cotorsion pair. In particular, the class  $\mathcal{PGF}_{\mathcal{B}}$  is precovering.

Since for any n > 1 the class of  $\mathcal{FP}_n$ -injective modules,  $\mathcal{FI}_n$ , is definable (so semi-definable also), and since  $\mathcal{GP}_n = \mathcal{PGF}_{\mathcal{FI}_n}$ , we obtain: Theorem

(Theorem C) Let n > 1. The class of generalized Gorenstein projectives,  $\mathcal{GP}_n$ , is precovering.

References:

1. D. Bravo and J.Gillespie and M. Hovey: *The stable module category* of a general ring, **International Electronic Journal of Algebra**, 18:1–20, 2015.

2. D. Bravo, S. Estrada, A. Iacob.  $FP_n$ -injective and  $FP_n$ -flat covers and preenvelopes and Gorenstein AC-flat covers, Alg. Colloquium, vol 25, issue 2, pages 319 - 334, 2018.

3. S. Estrada, A. Iacob, M. Perez. Model structures and relative Gorenstein flat modules and chain complexes, chapter in Contemporary Mathematics, Volume 751, Print ISBN 978-1-4704-4368-9, Electronic ISBN: 978-1-4704-5608-5, pages 135–176.
4. A. Iacob: Generalized Gorenstein modules, submitted.